Synthesis and Characterisation of Potential Hydrogen Storage Materials

نویسنده

  • Emil Johansson
چکیده

Johansson, E. 2004. Synthesis and Characterisation of Potential Hydrogen Storage Materials. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1005. 74 pp. Uppsala. ISBN 91-554-6020-8 The dissociative and non-dissociative hydrogen uptake in carbon nanostructures and metallic films were investigated by measurements and analysis of solubility isotherms. The total, non-dissociative, uptake for multi-walled nano-barrels and amorphous nanoporous carbon was determined to be 6.2 and 4.2 wt.% respectively at 77 K and the adsorption energies (at lowest coverage) -7.2 and -4.2 kJ/mol. At 298 K the H-uptake was negligible. At low concentrations the H-uptake of Nb-films is strongly affected by the film thickness. For thicknesses less then about 31 nm, the absorption energy was found to be temperature dependent. Such changes have not been observed in Nb films before. The presence of multiple absorption energies was shown to limit the possibility to obtain relevant absorption and interaction energies by traditional Sievert’s and van ’t

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, characterization and hydrogen storage properties of Mm(Ni,Co,Mn,Al)5 alloy

The hydrogenation characterizations of the hydrogen storage alloy MmNi4.22Co0.48Mn0.15Al0.15 (Mm= mischmetal), and the effect of hydrogenation/dehydrogenation (H/D) cycling on its structural and morphological properties are investigated. The results indicate that after several H/D cycles the alloy was pulverized into fine particles, but it kept its hexagonal CaCu5-type structure. The pressure-c...

متن کامل

Synthesis and Characterization of Zn3 (BTC)2 Nanoporous Sorbent and its Application for Hydrogen Storage at Ambient Temperature

Metal organic frameworks (MOFs) are considered an interesting option for hydrogen storage. These materials show an exceptional H2 uptake. Here, Zn3(BTC)2 as MOF was synthesized with a solvothermal method. The phase stability and microstructure of the Zn3(BTC)2 was characterized in terms of their properties and structures, using a number of analytical techniques including FT-IR, XRD, SEM, BET ...

متن کامل

Synthesis and Characterization of SiO2-Carbon Nanotube Hybrides Using a Sol-Gel Method

This work is focused on synthesis of SiO2- CNT hybrides via sol-gel method. Homogeneous distribution of carbon nanotubes within silicon matrix was obtained by mixing the functionalized carbon nanotube (CNTCOOH) with active silicic acid followed by titration to the solution of sodium silicate (Na2SiO3) under the average temperature condition of 80?C. Different ratios of multi-walled carbon nanot...

متن کامل

Temporal and spatial imaging of hydrogen storage materials: watching solvent and hydrogen desorption from aluminium hydride by transmission electron microscopy.

An in situ thermal desorption study of solvated aluminum hydride (alane) by transmission electron microscopy and selected area diffraction has permitted characterisation of the structural and morphological changes during desorption of solvent and hydrogen in real-time; this powerful technique for studying hydrogen storage materials complements several others already employed.

متن کامل

Multi-functional Energy Storage Materials

Hydrogen is recognized as a potential and extremely interesting energy carrier, which can facilitate efficient utilization of unevenly distributed renewable energy. Furthermore, hydrogen has an extremely interesting chemistry and form compounds with most elements in the periodic table and with a variety of different types of bonds. Metal hydrides has recently become very interesting as new clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004